Программирование на языке Pascal



Сортировка простым выбором


Попробуем теперь сократить количество пересылок элементов.

Алгоритм ПрВыб

На каждом шаге (всего их будет ровно N-1) будем производить такие действия:

  1. найдем минимум среди всех еще не упорядоченных элементов;
  2. поменяем его местами с первым "по очереди" не отсортированным элементом. Мы надеемся, что читателям очевидно, почему к концу работы этого алгоритма последний (N-й) элемент массива автоматически окажется максимальным.

Реализация ПрВыб

for i:= 1 to n-1 do begin min_ind:= i; for j:= i+1 to n do if a[j]<=a[min_ind] {***} then min_ind:= j; if min_ind<>i then begin x:= a[i]; a[i]:= a[min_ind]; a[min_ind]:= x; end; end;

Эффективность алгоритма ПрВыб

В лучшем случае (если исходная последовательность уже упорядочена), алгоритм ПрВыб произведет (N-1)*(N+2)/2 сравнений и 0 пересылок данных. В остальных же случаях количество сравнений останется прежним, а вот количество пересылок элементов массива будет равным 3*(N-1).

Таким образом, алгоритм ПрВыб имеет квадратичную сложность (~N2) по сравнениям и линейную (~N) - по пересылкам.

Замечание. Если перед вами поставлена задача отсортировать строки двумерного массива (размерности NxN) по значениям его первого столбца, то сложность алгоритма ПрВыб, модифицированного для решения этой задачи, будет квадратичной (N2 сравнений и N2 пересылок), а алгоритма БинВст - кубической (N*log N сравнений и N3 пересылок). Комментарии, как говорится, излишни.

Пример сортировки

Предположим, что нужно отсортировать тот же набор чисел, при помощи которого мы иллюстрировали метод сортировки простыми вставками:

5 3 4 3 6 2 1

Теперь мы будем придерживаться алгоритма ПрВыб (подчеркнута несортированная часть массива, а квадратиком выделен ее минимальный элемент):

1 шаг: 5343621 2 шаг: 1343625 3 шаг: 1243635 {***}6) 4 шаг: 1233645{ничего не делаем} 5 шаг: 1233645 6 шаг: 1233465 результат: 1233456




Содержание  Назад  Вперед